Disruption of TTDA Results in Complete Nucleotide Excision Repair Deficiency and Embryonic Lethality

نویسندگان

  • Arjan F. Theil
  • Julie Nonnekens
  • Barbara Steurer
  • Pierre-Olivier Mari
  • Jan de Wit
  • Charlène Lemaitre
  • Jurgen A. Marteijn
  • Anja Raams
  • Alex Maas
  • Marcel Vermeij
  • Jeroen Essers
  • Jan H. J. Hoeijmakers
  • Giuseppina Giglia-Mari
  • Wim Vermeulen
چکیده

The ten-subunit transcription factor IIH (TFIIH) plays a crucial role in transcription and nucleotide excision repair (NER). Inactivating mutations in the smallest 8-kDa TFB5/TTDA subunit cause the neurodevelopmental progeroid repair syndrome trichothiodystrophy A (TTD-A). Previous studies have shown that TTDA is the only TFIIH subunit that appears not to be essential for NER, transcription, or viability. We studied the consequences of TTDA inactivation by generating a Ttda knock-out (Ttda(-/-) ) mouse-model resembling TTD-A patients. Unexpectedly, Ttda(-/-) mice were embryonic lethal. However, in contrast to full disruption of all other TFIIH subunits, viability of Ttda(-/-) cells was not affected. Surprisingly, Ttda(-/-) cells were completely NER deficient, contrary to the incomplete NER deficiency of TTD-A patient-derived cells. We further showed that TTD-A patient mutations only partially inactivate TTDA function, explaining the relatively mild repair phenotype of TTD-A cells. Moreover, Ttda(-/-) cells were also highly sensitive to oxidizing agents. These findings reveal an essential role of TTDA for life, nucleotide excision repair, and oxidative DNA damage repair and identify Ttda(-/-) cells as a unique class of TFIIH mutants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Interaction of TTDA with TFIIH Is Stabilized by Nucleotide Excision Repair in Living Cells

Transcription/repair factor IIH (TFIIH) is essential for RNA polymerase II transcription and nucleotide excision repair (NER). This multi-subunit complex consists of ten polypeptides, including the recently identified small 8-kDa trichothiodystrophy group A (TTDA)/ hTFB5 protein. Patients belonging to the rare neurodevelopmental repair syndrome TTD-A carry inactivating mutations in the TTDA/hTF...

متن کامل

Sphingomyelin is the master of its domain

If it ain't broke, don't fix it Z iani et al. reveal how a large DNA repair complex assembles incompletely on undamaged DNA. The nucleotide excision repair pathway begins when the proteins XPC and hHR23b recognize damaged DNA and recruit the multisubunit transcription factor TFIIH. The transcription factor then recruits downstream repair factors such as XPA and the endonuclease XPF to form a pr...

متن کامل

Disruption of the mouse xeroderma pigmentosum group D DNA repair/basal transcription gene results in preimplantation lethality.

The xeroderma pigmentosum (XP) group D (XPD) gene encodes a DNA helicase that is a subunit of the transcription factor IIH complex, involved both in nucleotide excision repair of UV-induced DNA damage and in basal transcription initiation. Point mutations in the XPD gene lead either to the cancer-prone repair syndrome XP, sometimes in combination with a second repair condition; Cockayne syndrom...

متن کامل

Sequential and ordered assembly of a large DNA repair complex on undamaged chromatin

In nucleotide excision repair (NER), damage recognition by XPC-hHR23b is described as a critical step in the formation of the preincision complex (PInC) further composed of TFIIH, XPA, RPA, XPG, and ERCC1-XPF. To obtain new molecular insights into the assembly of the PInC, we analyzed its formation independently of DNA damage by using the lactose operator/repressor reporter system. We observed ...

متن کامل

Increased apoptosis, p53 up-regulation, and cerebellar neuronal degeneration in repair-deficient Cockayne syndrome mice.

Cockayne syndrome (CS) is a rare recessive childhood-onset neurodegenerative disease, characterized by a deficiency in the DNA repair pathway of transcription-coupled nucleotide excision repair. Mice with a targeted deletion of the CSB gene (Csb-/-) exhibit a much milder ataxic phenotype than human patients. Csb-/- mice that are also deficient in global genomic repair [Csb-/-/xeroderma pigmento...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013